Abstract

The stability of the ordered phase of the three-dimensional XY-model with random phase shifts is studied by considering the roughening of a single stretched vortex line due to the disorder. It is shown that the vortex line may be described by a directed polymer Hamiltonian with an effective random potential that is long range correlated. A Flory argument estimates the roughness exponent to $\zeta=3/4$ and the energy fluctuation exponent to $\omega=1/2$, thus fulfilling the scaling relation $\omega=2\zeta-1$. The Schwartz-Edwards method as well as a numerical integration of the corresponding Burger's equation confirm this result. Since $\zeta<1$ the ordered phase of the original XY-model is stable.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.