Abstract
In order to give numerical characterizations of the notion of "mutual orthogonality", we introduce two kinds of family of positive definite matrices for a unitary u in a finite von Neumann algebra M. They are arising from u naturally depending on the decompositions of M. One corresponds to the tensor product decomposition and the other does to the crossed product decomposition. By using the von Neumann entropy for these positive definite matrices, we characterize the notion of mutual orthogonality between subalgebras.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.