Abstract

Three-dimensional mechanical modelling of muscles is essential for various biomechanical applications and clinical evaluation, but it requires a tedious manual processing of numerous images. A muscle reconstruction method is presented based on a reduced set of images to generate an approximate parametric object from basic dimensions of muscle contours. A regular volumic mesh is constructed based on this parametric object. The approximate object and the corresponding mesh are deformed to fit the exact muscles contours yielding patient-specific geometry. Evaluation was performed by comparison of geometry to that obtained by contouring all computed tomography (CT) slices, and by quantification of the mesh quality criteria. Muscle fatty infiltration was estimated using a threshold between fat and muscle. Volumic fat index (VFI) of a muscle was computed using first all the complete CT scan slices containing the muscle (VFIref) and a second time only the slices used for reconstruction (VFIrecons). Mean volume error estimation was 2.6% and hexahedron meshes fulfilled quality criteria. VFIrecons respect the individual variation of fat content.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.