Abstract

Some important trends in geometric modeling are the reliance on solid models rather than surface-based models and the enhancement of the expressive power of models, by using free-form objects in addition to the usual geometric primitives and by incorporating physical principles. An additional trend is the emphasis on interactive performance. In this paper, we integrate all of these requirements into a single geometric primitive by endowing the tri-variate tensor-product free-form solid with several important physical properties, including volume and internal deformation energy. Volume preservation is of benefit in several application areas of geometric modeling, including computer animation, industrial design and mechanical engineering. However, previous physics-based methods, which have usually used some form of "energy", have neglected the issue of volume (or area) preservation. We present a novel method for modeling an object composed of several tensor-product solids while preserving the desired volume of each primitive and ensuring high-order continuity constraints between the primitives. The method utilizes the Uzawa algorithm for non-linear optimization, with objective functions based on deformation energy or least squares. We show how the algorithm can be used in an interactive environment by relaxing exactness requirements while the user interactively manipulates free-form solid primitives. On current workstations, the algorithm runs in real-time for tri-quadratic volumes and close to real-time for tri-cubic volumes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.