Abstract

The magnetic phase structure of FeCr in the CsCl ${(B}_{2})$ structure is studied as a function of volume by first-principles calculations using a four-atom unit cell. The ground state is found to be ferromagnetic (FM), but at a 3% expansion of the lattice constant the ground state becomes type-I antiferromagnetic (AF). The AF phase has the unusual structure in that both Fe and Cr sublattices are separately type-I AF. In both the FM and AF phases the Fe moment is reduced from that in pure bcc Fe and the Cr moment increased from that in pure bcc Cr.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.