Abstract

The adsorption of the polyether-antibiotic monensin from an aqueous solution on mercury was used to investigate the effect of the decreasing size of a stationary mercury drop electrode on the shape of the voltammetric desorption peak of the surfactant. The change of the i-E curve indicated an acceleration of the transport of the surfactant to the electrode as well as of time-dependent changes in the adsorption layer. A decrease of the radius of the hanging mercury drop electrode from 220 μm to 80 μm at a constant accumulation time of tac = 70 s resulted in an about 4-fold increase of the evaluated signal (i-E pre-wave) of monensin. A 7-fold increase of the voltammetric desorption peak of monensin at conc. 5 · 10–7 mol/L was observed as result of a compressive accumulation of the surfactant due to a contraction of the mercury drop electrode. A scheme of an apparatus for voltammetric/polarographic measurements by means of the contractible (compressible) mercury drop electrode is described. The controlled contraction of the electrode surface is presented together with preliminary results covering a new way of accumulation of surfactants, new accumulation effects, effective in adsorptive voltammetry, and other electroanalytical techniques.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.