Abstract

The electrochemical behavior of hydroquinone was examined experimentally using cyclic voltammetry, convolution transform, and deconvolution transform at clean ordinary and nanostructured mesoporous platinum electrodes in 1 mol/l HClO4. The cyclic voltammogram of hydroquinone (HQ) at an ordinary Pt electrode displays an anodic peak at 0.610 V and a cathodic peak at 0.117 V, with a scan rate of 50 mV·s–1. Excellent linearity was recorded between the anodic or cathodic peak currents of hydroquinone and the square root of the scan rate (υ1/2). The anodic and cathodic peak potential separation (∆Ep) was found to be 463 ± 3 mV vs. the saturated calomel electrode (SCE). It was noted that the value of peak potential separation increased with increasing the scan rate. The type of electrode reaction at both platinum electrodes in 1 mol/l HClO4 was examined and discussed. The electrochemical parameters and the nature of the mechanistic pathway of the investigated HQ were determined experimentally and ascertained via a numerical simulation method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.