Abstract

The voltammetric behavior of rosiglitazone was studied using direct current (DCt), differential pulse (DPP), and alternating current (ACt) polarography. The drug manifests cathodic waves over a pH range of 2–11.2. In Britton‐Robinson buffer (BRb; pH 4), the diffusion current–concentration relationship was found to be rectilinear over a range of 4–24 µg · mL−1 and 0.1–16 µg · mL−1 using DCt and DPP modes, respectively, with minimum limits of detection (LOD) of 0.15 µg · mL−1 and 0.07 µg · mL−1 using the DCt and DDP modes, respectively. The diffusion‐current constant (I d) was 6.63±0.03 (n=5). The proposed method was successfully applied to the determination of the studied compound both in pure form and in formulations. The mean percentage recoveries in tablets were 100.09±1.18 and 100.85±0.88 (n=5) using DCt and DPP modes, respectively. Furthermore, the proposed method, adopting the DPP mode, was applied to the determination of rosiglitazone in spiked human plasma and the obtained mean percentage recoveries were 99.14±3.29 (n=4).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.