Abstract
A LaCoO3/SrTiO3 heterostructure grown on Si (001) is shown to provide electrically switchable ferromagnetism, a large, electrically tunable magnetoresistance, and a vehicle for achieving and probing electrical control over ferromagnetic behavior at submicron dimensions. Fabrication of devices in a field-effect transistor geometry enables application of a gate bias voltage that modulates strain in the heterostructure via the converse piezoelectric effect in SrTiO3, leading to an artificial inverse magnetoelectric effect arising from the dependence of ferromagnetism in the LaCoO3 layer on strain. Below the Curie temperature of the LaCoO3 layer, this effect leads to modulation of resistance in LaCoO3 as large as 100%, and magnetoresistance as high as 80%, both of which arise from carrier scattering at ferromagnetic-nonmagnetic interfaces in LaCoO3. Finite-element numerical modeling of electric field distributions is used to explain the dependence of carrier transport behavior on gate contact geometry, and a Valet-Fert transport model enables determination of spin polarization in the LaCoO3 layer. Piezoresponse force microscopy is used to confirm the existence of piezoelectric response in SrTiO3 grown on Si (001). It is also shown that this structure offers the possibility of achieving exclusive-NOR logic functionality within a single device.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.