Abstract
We document several problems with GARCH type model predictions over the multi-day horizons common to option valuations and value-at-risk models. One, GARCH model forecasts of the return standard deviation - the most common volatility measure and the most appropriate for option valuation and value-at-risk models - are positively biased. Two, the bias is especially severe following high volatility days. Three, in forecasting volatility over longer horizons, the GARCH model puts too little weight on older observations relative to the more recent observations. That is older observations are more important in forecasting volatility next month than in forecasting volatility tomorrow while the GARCH procedure treats them equally at both horizons. We present a simple unbiased regression estimator of the standard deviation of returns which avoids these problems. We find it forecasts better out-of-sample than GARCH, EGARCH, and historical volatility across a wide variety of markets and forecast horizons.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.