Abstract
This paper investigates the relationship between volatility and liquidity on the German electricity futures market based on high-frequency intraday prices. We estimate volatility by the time-weighted realized variance acknowledging that empirical intraday prices are not equally spaced in time. Empirical evidence suggests that volatility of electricity futures decreases as time approaches maturity, while coincidently liquidity increases. Established continuous-time stochastic models for electricity futures prices involve a growing volatility function in time and are thus not able to capture our empirical findings a priori. In Monte Carlo simulations, we demonstrate that incorporating increasing liquidity into the established models is key to model the decreasing volatility evolution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Theoretical and Applied Finance
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.