Abstract

The Green Tuff (GT) Plinian eruption, the largest in magnitude at Pantelleria, erupted 3 to 7km3 DRE of pantellerite magma and a small volume of trachyte. Fifty-nine anorthoclase-hosted melt inclusions from the two basal pumice members were analyzed by FT-IR spectroscopy in order to assess the pre-eruptive H2O content in the pantellerite melt. Microanalytical methods were used to determine major element, Cl, F and S contents. Melt inclusions and glassy groundmasses have a nearly homogeneous pantelleritic composition (peralkaline index=1.9-2.2) and variable water contents ranging from 1.4 to as high as 4.2 wt %, i.e. much higher than the 1.4 wt % of earlier published studies. The chlorine content is constant at about 1 wt %. Combined Cl and H2O data were used to estimate a confining pressure of about 50MPa (depth around 2-3km) for the GT magma chamber. The chamber was characterized by a compositional zoning with a dominant pantellerite overlying a trachyte magma. Soon after the GT eruption, intra-caldera volcanism was dominated by the eruption of voluminous trachyte lava flows, while pantellerite melt production resumed after about 20ka with numerous low-volume, mildly explosive (Strombolian) to effusive eruptions. Comparison with data from the literature reveals that, despite the different explosivity, the post-caldera Strombolian eruptions and the GT Plinian eruption were fed by pantelleritic magmas with similar water contents. Chlorine and CO2 contents suggest that the young magma reservoirs feeding the Strombolian to effusive activity were deeper (h≥4.5km) than the much larger (based on erupted volumes) magma chamber which fed the GT eruption.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.