Abstract

Herpes Simplex Virus Type -1 (HSV-1) infections can cause serious complications such as keratitis and encephalitis. The goal of this study was to identify any changes in the concentrations of volatile organic compounds (VOCs) produced during HSV-1 infection of epithelial cells that could potentially be used as an indicator of a response to stress. An additional objective was to study if any VOCs released from acute epithelial infection may influence subsequent neuronal infection to facilitate latency. To investigate these hypotheses, Vero cells were infected with HSV-1 and the emission of VOCs was analyzed using two-dimensional gas chromatograph/mass spectrometry (2D GC/MS). It was observed that the concentrations of gamma-butyrolactone (GBL) in particular changed significantly after a 24-hour infection. Since HSV-1 may establish latency in neurons after the acute infection, GBL was tested to determine if it exerts neuronal regulation of infection. The results indicated that GBL altered the resting membrane potential of differentiated LNCaP cells and promoted a non-permissive state of HSV-1 infection by repressing viral replication. These observations may provide useful clues towards understanding the complex signaling pathways that occur during the HSV-1 primary infection and establishment of viral latency.

Highlights

  • Herpes Simplex Virus Type -1 (HSV-1) is one of the most common causes of infectious disease in humans, and its early detection could avoid serious complications such as encephalitis, and further spread of the virus

  • The volatile organic compounds (VOCs) from the infected cells were collected via headspace sampling using a 50/30 μm Divinylbenzene/Carboxen Solid Phase MicroExtraction (SPME) device (Fig 1) followed by analysis using 2D Gas Chromatograph/ Mass Spectrometry (GC/MS)

  • At the end of the infection time period, a SPME was inserted into the headspace to collect VOCs followed by a 2D gas chromatograph (GC)/MS analysis

Read more

Summary

Objectives

The goal of this study was to identify any changes in the concentrations of volatile organic compounds (VOCs) produced during HSV-1 infection of epithelial cells that could potentially be used as an indicator of a response to stress

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.