Abstract

Voigt points represent propagation directions in anisotropic crystals along which optical modes degenerate, leading to a single circularly polarized eigenmode. They are a particular class of exceptional points. Here, we report the fabrication and characterization of a dielectric, anisotropic optical microcavity based on nonpolar ZnO that implements a non-Hermitian system and mimics the behavior of Voigt points in natural crystals. We prove the exceptional-point nature by monitoring the complex-square-root topology of the mode eigenenergies (real and imaginary parts) around the Voigt points. Polarization state analysis shows that these artificially engineered Voigt points behave as vortex cores for the linear polarization and sustain chiral modes. Our findings apply to any planar microcavity with broken cylindrical symmetry and, thus, pave the way for exploiting exceptional points in widespread optoelectronic devices such as vertical cavity surface emitting lasers and resonant cavity light emitting diodes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.