Abstract

Posture estimation using a single depth camera has become a useful tool for analyzing movements in rehabilitation. Recent advances in posture estimation in computer vision research have been possible due to the availability of large-scale pose datasets. However, the complex postures involved in rehabilitation exercises are not represented in the existing benchmark depth datasets. To address this limitation, we propose two rehabilitation-specific pose datasets containing depth images and 2D pose information of patients, both adult and children, performing rehab exercises. We use a state-of-the-art marker-less posture estimation model which is trained on a non-rehab benchmark dataset. We evaluate it on our rehab datasets, and observe that the performance degrades significantly from non-rehab to rehab, highlighting the need for these datasets. We show that our dataset can be used to train pose models to detect rehab-specific complex postures. The datasets will be released for the benefit of the research community.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.