Abstract

Development of modern techniques, such as virtualization, underlies new solutions to the problem of reducing energy consumption in cloud computing. However, for the infrastructure as a service providers, it would be a difficult process to guarantee energy saving. Analysis of the workload of applications shows that the average utilization of virtual machines has many fluctuations; therefore, deciding about how to control such fluctuations in virtual machines plays a significant role in improving the energy consumption of datacenters. In this study, an adaptable model called virtual machine dynamic frequency system (VMDFS) has been developed whose its innovation is monitoring the average fluctuations of workloads to vary the CPU frequency of virtual machines at runtime, dynamically. In this model, enhanced exponential moving average method is used to predict workload fluctuations, and then after calculating a smoothing coefficient for the utilization fluctuations, the coefficient is used to control the CPU frequency (or computing power) of virtual machines. The proposed model was compared with several base line approaches such as DVFS using real datasets from CoMon project (PlanetLab). The results of experiments on VMDFS show that besides the reduced service-level agreement violation by up to 43.22%, the overall energy consumption is reduced by 40.16%. In addition, the overall runtime before a host shutdown increased by 17.44% in average, while the runtime before a virtual machine migration increased by 7.2%. This also shows an overall decrease in the number of migrations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.