Abstract

With cloud and utility computing models gaining significant momentum, data centers are increasingly employing virtualization and consolidation as a means to support a large number of disparate applications running simultaneously on a chip-multiprocessor (CMP) server. In such environments, contention for shared platform resources (CPU cores, shared cache space, shared memory bandwidth, etc.) can have a significant effect on each virtual machine's performance. In this paper, we investigate the shared resource contention problem for virtual machines by: (a) measuring the effects of shared platform resources on virtual machine performance, (b) proposing a model for estimating shared resource contention effects, and (c) proposing a transition from a virtual machine (VM) to a virtual platform architecture (VPA) that enables transparent shared resource management through architectural mechanisms for monitoring and enforcement. Our measurement and modeling experiments are based on a consolidation benchmark (vConsolidate) running on a state-of-the-art CMP server. Our virtual platform architecture experiments are based on detailed simulations of consolidation scenarios. Through detailed measurements and simulations, we show that shared resource contention affects virtual machine performance significantly and emphasize that virtual platform architectures is a must for future virtualized datacenters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.