Abstract

The authors recently developed a therapeutic technique for patients with limbal stem cell deficiency by harvesting ocular surface stem cells (SCs), expanding them on therapeutic contact lenses (CLs), and applying them to diseased corneas. The present study determined the proteins that bind to CLs and whether such factors, along with transplanted cells, are critical determinants for corneal rehabilitation using this method. Therapeutic CLs were exposed to human serum, and adherent proteins were analyzed by proteomics. The distribution of vitronectin (VN) on the ocular surface was determined with specific antibodies. Cadaveric human corneas were chemically wounded, and cell transfer by CLs was assessed in organ culture. VN was identified as a serum factor that binds and desorbs from CLs. VN localized to the limbal and basement membranes (BM) of other SC-harboring organs. Clonogenic assays demonstrated higher colony-forming efficiency on VN compared with uncoated surfaces. Cell transfer from CLs was achieved through in vitro models and was abrogated by RGD peptides and inhibitory antibodies to VN and its receptor. Identification of VN within the limbal BM, its effect on limbal SC activity, and the discovery of this factor on serum-exposed CL polymers implies a role in supporting progenitor cells and facilitating corneal regeneration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.