Abstract

BackgroundVitamin D is involved in brain physiology and lower-extremity function. We investigated spectroscopy in a cohort of older adults to explore the hypothesis that lower vitamin D status was associated with impaired neuronal function in caudal primary motor cortex (cPMC) measured by proton magnetic resonance spectroscopic imaging.MethodsTwenty Caucasian community-dwellers (mean±standard deviation, 74.6±6.2 years; 35.0% female) from the ‘Gait and Brain Study’ were included in this analysis. Ratio of N-acetyl-aspartate to creatine (NAA/Cr), a marker of neuronal function, was calculated in cPMC. Participants were categorized according to mean NAA/Cr. Lower vitamin D status was defined as serum 25-hydroxyvitamin D (25OHD) concentration <75 nmol/L. Age, gender, number of comorbidities, vascular risk, cognition, gait performance, vitamin D supplements, undernourishment, cPMC thickness, white matter hyperintensities grade, serum parathyroid hormone concentration, and season of evaluation were used as potential confounders.ResultsCompared to participants with high NAA/Cr (n = 11), those with low NAA/Cr (i.e., reduced neuronal function) had lower serum 25OHD concentration (P = 0.044) and more frequently lower vitamin D status (P = 0.038). Lower vitamin D status was cross-sectionally associated with a decrease in NAA/Cr after adjustment for clinical characteristics (β = −0.41, P = 0.047), neuroimaging measures (β = −0.47, P = 0.032) and serum measures (β = −0.45, P = 0.046).ConclusionsLower vitamin D status was associated with reduced neuronal function in cPMC. These novel findings need to be replicated in larger and preferably longitudinal cohorts. They contribute to explain the pathophysiology of gait disorders in older adults with lower vitamin D status, and provide a scientific base for vitamin D replacement trials.

Highlights

  • Beyond its long-known involvement in bone health, vitamin D has emerged as a secosteroid hormone with non-skeletal effects [1,2]

  • Our objective was to determine whether lower vitamin D status in older adults was associated with impaired neuronal function in caudal primary motor cortex (cPMC) measured by proton magnetic resonance spectroscopy (1H-MRS)

  • Confounders Age, gender, number of comorbidities, vascular risk, global cognitive performance, high-level gait performance, use of vitamin D supplements, undernourishment, cPMC thickness, white matter hyperintensities (WMH) grade, serum parathyroid hormone (PTH) concentration, and season of evaluation were used as potential confounders

Read more

Summary

Introduction

Beyond its long-known involvement in bone health, vitamin D has emerged as a secosteroid hormone with non-skeletal effects [1,2]. Since the primary motor cortex (PMC) is the final integrator of motor control via a somatotopic organization [9,10), we hypothesized that lower vitamin D status in older adults could directly affect the subregion of the PMC responsible for lower-limb motricity (i.e., caudal PMC, cPMC). Our objective was to determine whether lower vitamin D status in older adults was associated with impaired neuronal function in cPMC measured by proton magnetic resonance spectroscopy (1H-MRS). We investigated spectroscopy in a cohort of older adults to explore the hypothesis that lower vitamin D status was associated with impaired neuronal function in caudal primary motor cortex (cPMC) measured by proton magnetic resonance spectroscopic imaging

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.