Abstract

A novel poly(urethane-urea) (PUU) based on poly(glycolide-co-ε-caprolactone) macro-diol with tunable mechanical properties and biodegradation behavior is reported for corneal stromal tissue regeneration. Zn-Al layered double hydroxide (LDH) nanoparticles were synthesized and loaded with vitamin C (VC, VC-LDH) and dispersed in the PUU to control VC release in the cell culturing medium. To mimic the corneal stromal EC, scaffolds of the PUU and its nanocomposites with VC-LDH (PUU-LDH and PUU-VC-LDH) were fabricated via electrospinning. Average diameters of the aligned nanofibers were recorded as 325 ± 168, 343 ± 171, and 414 ± 275 nm for the PUU, PUU-LDH, and PUU-VC-LDH scaffolds, respectively. Results of hydrophilicity and mechanical properties measurements showed increased hydrophobicity and reduced tensile strength and elongation at break upon addition of nanoparticles to the PUU scaffold. VC release studies represented that intercalation of the drug in Zn-Al-LDH controlled the burst release and extended the release period from a few hours to 5 days. Viability and proliferation of stromal keratocyte cells on the scaffolds were investigated via AlamarBlue assay. After 24 h, the cells showed similar viability on the scaffolds and the control. After 1 week, the cells showed some degree of proliferation on the scaffolds, with the highest value recorded for PUU-VC-LDH. SEM images of the scaffolds after 24 h and 1 week confirmed good penetration and attachment of keratocytes on all the scaffolds and the cells oriented with the direction of nanofibers. After 1 week, the PUU-VC-LDH scaffold was fully covered by the cells. Immunocytochemistry assay (ICC) was performed to investigate secretion of vimentin protein, ALDH3A1, and α-SMA by the cells. After 24h and 1 week, remarkably higher levels of vimentin and ALDH3A1 and lower level of α-SMA were secreted by keratocytes on PUU-VC-LDH compared to those on the PUU and PUU-LDH scaffolds and the control. Our results suggest that the aligned PUU-VC-LDH is a promising candidate for corneal stromal tissue engineering due to the presence of zinc and vitamin C.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.