Abstract
Fluorescence imaging the interplay between lipid droplets (LDs) and protein aggregates (PAs) is extremely valuable for elucidating molecular mechanisms of aging. Here, we describe the first dual-functional fluorescent probe, LW-1, for simultaneously imaging LDs and PAs in distinct fluorescence channels to dissect interplaying roles between LDs and PAs during aging. Notably, based on an intriguing mechanism of hydrogen bonds regulating single bond rotation, LW-1 selectively detected LDs in a red channel. Meanwhile, based on another mechanism of the hydrogen bond regulating intramolecular charge transfer efficiency, probe LW-1 further detected PAs in an NIR channel. Practical applications showed that LW-1 was capable of concurrently detecting LDs and PAs in living cells. Moreover, simultaneously imaging LDs and PAs in intestine tissues of mice at different aging degrees was conducted. The results denoted that the PAs level in the intestine tissue increased dramatically with aging, accompanying the buildup of LDs. Significantly, the interplay between LDs and PAs during aging was observed. These evidences demonstrated that the PAs level was closely related with aging processes in intestine tissues, while LDs were formed correspondingly to interact with PAs, suggesting that excessive PAs can be loaded into LDs and then be removed by lipophagy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.