Abstract
Intrinsically disordered proteins (IDPs) play crucial roles in cellular processes and hold promise as drug targets. However, the dynamic nature of IDPs remains poorly understood. Here, we construct a single-molecule electrical nanocircuit based on silicon nanowire field-effect transistors (SiNW-FETs) and functionalize it with an individual disordered c-Myc bHLH-LZ domain to enable label-free, in situ, and long-term measurements at the single-molecule level. We use the device to study c-Myc interaction with Max and/or small molecule inhibitors. We observe the self-folding/unfolding process of c-Myc and reveal its interaction mechanism with Max and inhibitors through ultrasensitive real-time monitoring. We capture a relatively stable encounter intermediate ensemble of c-Myc during its transition from the unbound state to the fully folded state. The c-Myc/Max and c-Myc/inhibitor dissociation constants derived are consistent with other ensemble experiments. These proof-of-concept results provide an understanding of the IDP-binding/folding mechanism and represent a promising nanotechnology for IDP conformation/interaction studies and drug discovery.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.