Abstract

Cellular secretion of proteins into the extracellular environment is an essential mediator of critical biological mechanisms, including cell-to-cell communication, immunological response, targeted delivery, and differentiation. Here, we report a novel methodology that allows for the real-time detection and imaging of single unlabeled proteins that are secreted from individual living cells. This is accomplished via interferometric detection of scattered light (iSCAT) and is demonstrated with Laz388 cells, an Epstein-Barr virus (EBV)-transformed B cell line. We find that single Laz388 cells actively secrete IgG antibodies at a rate of the order of 100 molecules per second. Intriguingly, we also find that other proteins and particles spanning ca. 100 kDa-1 MDa are secreted from the Laz388 cells in tandem with IgG antibody release, likely arising from EBV-related viral proteins. The technique is general and, as we show, can also be applied to studying the lysate of a single cell. Our results establish label-free iSCAT imaging as a powerful tool for studying the real-time exchange between cells and their immediate environment with single-protein sensitivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.