Abstract

Conjugated organic polymers based on substituted thiophene units are versatile building blocks of many photoactive materials, such as photochromic molecular switches or solar energy conversion devices. Unraveling the different processes underlying their photochemistry, such as the evolution on different electronic states and multidimensional structural relaxation, is a challenge critical to defining their function. Using femtosecond stimulated Raman scattering (FSRS) supported by quantum chemical calculations, we visualize the reaction pathway upon photoexcitation of the model compound 2-methyl-5-phenylthiophene. Specifically, we find that the initial wavepacket dynamics of the reaction coordinates occurs within the first ≈1.5 ps, followed by a ≈10 ps thermalization. Subsequent slow opening of the thiophene ring through a cleavage of the carbon-sulfur bond triggers an intersystem crossing to the triplet excited state. Our work demonstrates how a detailed mapping of the excited-state dynamics can be obtained, combining simultaneous structural sensitivity and ultrafast temporal resolution of FSRS with the chemical information provided by time-dependent density functional theory calculations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.