Abstract

In this study, laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) is applied to previously aged carbonaceous anodes from lithium ion batteries (LIBs). These electrodes are treated by cyclic aging in a lithium ion cell set-up against Li1[Ni1/3Mn 1/3Co1/3]O2 = NMC111 to elucidate factors that influence transition metal dissolution (TMD) of the cathode and subsequent deposition on the anode. The investigations are carried out by qualitatively visualizing the 7Li and TM patterns (60Ni, 55Mn and 59Co) of whole coin and pouch-bag electrodes.The lithium, as well as the TM amount, found on the anode, is directly correlated to the applied upper cut-off voltage (4.6, 4.7, 4.8 and 4.9 V) showing more deposition of Li and TMs at elevated voltages. While 7Li shows a more homogeneous pattern, the TM distribution is inhomogeneous but showing a similar pattern for all TMs of the same sample. An unequal pressure distribution, resulting in a nonparallel electrode alignment, on the electrode stack is identified to be responsible for the inhomogeneous TM deposition pattern. This uneven electrode orientation results in different diffusion pathways for the TM migration with regard to the spatial distances.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.