Abstract
The Rhodamine 6G fluorescence enhanced by the surface electromagnetic waves coupled on surface of 1D photonic crystals is studied. The fluorescence-mediated surface electromagnetic waves (SEW) distribution is visualized by means of far-field fluorescence microscopy. The kinetics of Rhodamine 6G bleaching due to SEW is studied. The way of SEW visualization in reflectivity spectra via fluorescence process is shown. The prospective for SEW application in the optical sensors field is tested via direct spectroscopy of the photonic crystal covered by the ethanol and R6G thin film. Spectral flexibility of the SEW excitation depending on the effective photonic crystal dispersion controlled by its design rather than on material dispersion opens prospectives for the application of SEW-enhanced fluorescence microscopy in biocensing with increased spatial and concentration sensitivity and spectral selectivity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.