Abstract

In this paper, we present a simple yet effective Boolean map based representation that exploits connectivity cues for visual tracking. We describe a target object with histogram of oriented gradients and raw color features, of which each one is characterized by a set of Boolean maps generated by uniformly thresholding their values. The Boolean maps effectively encode multi-scale connectivity cues of the target with different granularities. The fine-grained Boolean maps capture spatially structural details that are effective for precise target localization while the coarse-grained ones encode global shape information that are robust to large target appearance variations. Finally, all the Boolean maps form together a robust representation that can be approximated by an explicit feature map of the intersection kernel, which is fed into a logistic regression classifier with online update, and the target location is estimated within a particle filter framework. The proposed representation scheme is computationally efficient and facilitates achieving favorable performance in terms of accuracy and robustness against the state-of-the-art tracking methods on the OTB50 and VOT2016 benchmark datasets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.