Abstract
This paper describes the procedure for detection and tracking of a vehicle from an on-road image sequence taken by a monocular video capturing device in real time. The main objective of such a visual tracking system is to closely follow objects in each frame of a video stream, such that the object position as well as other geometric information are always known. In the tracking system described, the video capturing device is also moving. It is a challenge to detect and track a moving vehicle under a constantly changing environment coupled to real time video processing. The system suggested is robust to implement under different illuminating conditions by using the monocular video capturing device. The vehicle tracking algorithm is one of the most important modules in an autonomous vehicle system, not only it should be very accurate but also must have the safety of other vehicles, pedestrians, and the moving vehicle itself. In order to achieve this an algorithm of multi resolution technique based on Haar basis functions were used for the wavelet transform, where a combination of classification was carried out with the multilayer feed forward neural network. The classification is done in a reduced dimensional space, where principle component analysis (PCA) dimensional reduction technique has been applied to make the classification process much more efficient. The results show the effectiveness of the proposed methodology.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.