Abstract

Simultaneous Localization and Mapping (SLAM) is a fundamental problem in mobile robotics. However, the majority of Visual SLAM algorithms assume a static scenario, limiting their applicability in real-world environments. Dealing with dynamic content in Visual SLAM is still an open problem, with solutions usually relying on direct or feature-based methods. Deep learning techniques can improve the SLAM solution in environments with a priori dynamic objects, providing high-level information of the scene. This paper presents a new approach to SLAM in human populated environments using deep learning-based techniques. The system is built on ORB-SLAM2, a state-of-the-art SLAM system. The proposed methodology is evaluated using a benchmark dataset, outperforming other Visual SLAM methods in highly dynamic scenarios.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.