Abstract

Immunocytological technologies, molecular technologies, and functional assays are widely used for detecting circulating tumor cells (CTCs) after enrichment from patients' blood sample. Unfortunately, accessibility to these technologies is limited due to the need for sophisticated instrumentation and skilled operators. Portable microfluidic devices have become attractive tools for expanding the access and efficiency of detection beyond hospitals to sites near the patient. Herein, a volumetric bar chart chip (V-Chip) is developed as a portable platform for CTC detection. The target CTCs are labeled with aptamer-conjugated nanoparticles (ACNPs) and analyzed by V-Chip through quantifying the byproduct (oxygen) of the catalytic reaction between ACNPs and hydrogen peroxide, which results in the movement of an ink bar to a concentration-dependent distance for visual quantitative readout. Thus, the CTC number is decoded into visually quantifiable information and a linear correlation can be found between the distance moved by the ink and number of cells in the sample. This method is sensitive enough that a single cell can be detected. Furthermore, the clinical capabilities of this system are demonstrated for quantitative CTC detection in the presence of a high leukocyte background. This portable detection method shows great potential for quantification of rare cells with single-cell sensitivity for various applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.