Abstract

Unintentional vascular damage can result from a surgical instrument’s abrupt movements during minimally invasive surgery (laparoscopic or robotic). A novel real-time image processing algorithm based on local entropy is proposed that can detect abrupt movements of surgical instruments and predict bleeding occurrence. The uniform nature of the texture of surgical tools is utilized to segment the tools from the background. By comparing changes in entropy over time, the algorithm determines when the surgical instruments are moved abruptly. We tested the algorithm using 17 videos of minimally invasive surgery, 11 of which had tool-induced bleeding. Our preliminary testing shows that the algorithm is 88% accurate and 90% precise in predicting bleeding. The average advance warning time for the 11 videos is 0.662 s, with the standard deviation being 0.427 s. The proposed approach has the potential to eventually lead to a surgical early warning system or even proactively attenuate tool movement (for robotic surgery) to avoid dangerous surgical outcomes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.