Abstract

The present work with specific objectives places a greater emphasis on measurements of the breakup lengths and phenomenological analysis of a hot water jet under reduced pumping pressures in still environment. Therefore, visual and comparative studies are conducted on full cone jet disintegration of heated water for low pumping pressures. A further analysis of the grabbed images confirms the strong influence of the input processing parameters on full cone spray patternation. It is also predicted that the heated liquids generate a dispersed spray pattern by utilizing partial evaporation of the spraying medium. The radial spray cone width and angle do not vary significantly with increasing Reynolds and Weber numbers at early injection phases, leading to enhanced macroscopic spray propagation. The discharge coefficient, mean flow rate, and mean flow velocity are significantly influenced by the load pressure, but less affected by the temperature. The fine scale image analysis also predicts toroidal-shaped vortex formation in the spray structure near the water boiling point.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.