Abstract

Spaceflight-Associated Neuro-ocular Syndrome (SANS) was linked to increased intracranial pressure (ICP) attributable to the combined effects of microgravity and environmental conditions encountered during spaceflight. Microgravity countermeasures as lower body negative pressure (LBNP) are potential interventions for SANS. Our aim is to provide a comprehensive qualitative analysis of literature contrasting simulation and spaceflight studies, focusing on the pathophysiology of SANS, and highlighting gaps in current knowledge. We systematically searched PubMed electronic database for English primary research published until February 2019 discussing intracranial changes in spaceflight or simulated microgravity, excluding animal and experimental studies. Two authors screened all the abstracts with a third author resolving disagreements. The full-text manuscripts were analyzed in pilot-tested tables. Nineteen studies were reviewed; 13 simulation, and two out of six spaceflight studies were prospective. ICP changes were investigated in 11 simulation studies, where eight demonstrated a significant increase in ICP after variable periods of head-down tilt. three showed a significant increase in intraocular pressure (IOP) in conjunction with ICP elevation. With increasing ambient CO<inf>2</inf>: one showed an increase in IOP without further increase in ICP, while another showed a slight further decrease in ICP. LBNP demonstrated no significant effect on ICP in one and a decrease thereof in another study. After spaceflight, increased ICP on lumbar puncture was demonstrated in five studies. Exposure to microgravity increases ICP possibly precipitating ocular changes. Whether other factors come into play is the subject of investigation. Further randomized studies and methods of direct ICP measurement during spaceflight are needed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.