Abstract

Currently, many Chinese font translation models adopt the method of dividing character components to improve the quality of generated font images. However, character components require a large amount of manual annotation to decompose characters and determine the composition of each character as input for training. In this paper, we establish a Chinese font translation model based on generative adversarial network without decomposition. First, we improve the method of image enhancement for Chinese character images. It helps the model learning structure information of Chinese character strokes to generate font images with complete and accurate strokes. Second, we propose a visual attention adversarial network. By using visual attention block, the network catches global and local features for constructing details of characters. Experiments demonstrate our method generates high-quality Chinese character images with great style diversity including calligraphy characters.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.