Abstract
Despite significant advances in the analysis and visualization of unsteady flow, the interpretation of it's behavior still remains a challenge. In this work, we focus on the linear correlation and non-linear dependency of different physical attributes of unsteady flows to aid their study from a new perspective. Specifically, we extend the existing spatial correlation quantification, i.e. the Local Correlation Coefficient (LCC), to the spatio-temporal domain to study the correlation of attribute-pairs from both the Eulerian and Lagrangian views. To study the dependency among attributes, which need not be linear, we extend and compute the mutual information (MI) among attributes over time. To help visualize and interpret the derived correlation and dependency among attributes associated with a particle, we encode the correlation and dependency values on individual pathlines. Finally, to utilize the correlation and MI computation results to identify regions with interesting flow behavior, we propose a segmentation strategy of the flow domain based on the ranking of the strength of the attributes relations. We have applied our correlation and dependency metrics to a number of 2D and 3D unsteady flows with varying spatio-temporal kernel sizes to demonstrate and assess their effectiveness.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Visualization and Computer Graphics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.