Abstract

In order to evaluate the feasibility of planetary exploration missions, it is imperative to construct planetary terrain environments on the ground. Nevertheless, the implementation of this method is characterized by time-consuming and challenging factors. By contrast, resorting to simulation approaches represents a cost-effective and high-efficiency alternative, which can facilitate the simulation validation of planetary rover exploration missions in an effective manner. In this paper, a modular planet rover simulation platform is proposed; by building and overlaying multiple feature layers corresponding to the surface of the planet, we realize the simulation of high-resolution fine terrain and through adjusting the terrain parameters to meet the needs of different simulated terrain. The experimental results show that we have built a scene to satisfy the requirements of visual effects and physically realistic characteristics of simulation. Using an improved PatchMatch stereomethod to recover images captured real time by a planetary rover navigation camera in a virtual environment provided more complete three-dimensional terrain data for subsequent simulation validation of local path planning. Finally, a simulation environment that combines high-fidelity visual effects and kinematic characteristics supports visualizing the simulation platform: we propose a path planning method using global planning combined with local obstacle avoidance, and we obtain the optimal path that satisfies the kinematic constraints.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.