Abstract

A vision based navigation system to guide an endoscope inside a human colon has been designed and tested. It uses low level vision techniques to extract two types of navigational landmarks, dark regions and curved contours. Dark regions correspond to the distant inner space of the colon, called the lumen. The curved contours represent occlusions due to the inner colon muscles. A hierarchical search space and environment representation, called the QL-tree, was developed to integrate the visual features and implement the navigation system. It uses multiple quadtrees which are linked at all hierarchical levels. A multiprocessor system was employed to achieve real-time performance. The endoscope navigation system has been used successfully in artificial colon models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.