Abstract
In this work, a Z-scheme LaFeO3/g-C3N4/ZnO heterojunction photocatalyst with large specific surface (68.758 m2/g) and low cost (0.00035 times the cost of per gram of Au) was easily synthesized by glucose-assisted hydrothermal method. The structure, surface morphology, and optical properties of the photocatalyst were investigated. The constructed Z-scheme heterojunction catalysts can enhance the visible light absorption and carrier separation efficiency. Among these photocatalysts, the 10%-LaFeO3/g-C3N4/ZnO composite possesses the premium performance for efficient degrading 97.43% of phenol within 120 min. Even after 5 cycles, it still sustains an excellent photocatalytic stability (92.13% phenol degradation). According to the XPS surface states and the capture of active species on LaFeO3/g-C3N4/ZnO, the electrons would be transferred from ZnO and LaFeO3 to g-C3N4. In addition, ·OH plays an important role in photocatalytic reactions for phenol degradation. Thus, the proposed possible photocatalytic reaction mechanism of Z-scheme LaFeO3/g-C3N4/ZnO can provide a more economical and efficient conception for phenol degradation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.