Abstract

Herein, a highly efficient Z-scheme SnS2/MIL-88B (Fe) (SnSFe) heterojunction was successfully synthesized to use both as photocatalysts and persulfate (PS) activator for ibuprofen (IBP) degradation. Flower-liked SnS2 was uniformly loaded on MIL-88B (Fe), and SnSFe retained the original polyhedral morphology of MIL-88B (Fe). The highest removal of IBP was achieved in the presence of SnSFe with 0.5% SnS2(SnSFe0.5). Characteristic results and density functional theory calculations demonstrated that the enhanced degradation of IBP was due to the difference in Fermi energy levels of SnS2 and MIL-88B (Fe) leading to electrons transferred from SnS2 to MIL-88B (Fe), and SnO bond was formed in SnSFe. , OH and O2− were the main active species in SnSFe0.5/PS/visible light system. Z-scheme heterojunction of SnSFe was constructed to propose the degradation mechanism. This research revealed that the synergism of photocatalysis and PS activation using SnS2/Fe-based MOFs composites possessed great potentials in wastewater remediation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.