Abstract

AbstractRoom temperature visible and IR light electroluminescence (EL) has been obtained from Er-doped GaN Schottky barrier diodes. The GaN was grown by molecular beam epitaxy on Si substrates using solid sources (for Ga and Er) and a plasma source for N2. Transparent contacts utilizing indium tin oxide were employed. Strong green light emission was observed under reverse bias due to electron impact excitation of the Er atoms. Weaker emission was present under forward bias. The emission spectrum consists of two narrow green lines at 537 and 558 nm and minor peaks at 413, 461, 665, and 706 nm. There is also emission at 1000 nm and 1540 nm in the IR. The green emission lines have been identified as Er transitions from the 2H11/2 and 4S3/2 levels to the 4I15/2 ground state. The IR emission lines have been identified as transitions from the 4I13/2 and 4I13/2 levels to the 4I15/2 ground state. EL intensity for visible and IR light has a sub-unity power law dependence on bias current. An external quantum efficiency of 0.1% has also been demonstrated under a reverse bias current of 3.85 mA.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.