Abstract

The compositional dependence of viscous flow in the NixZr100−x amorphous system was investigated under non-isothermal conditions at a heating rate of 10 K min−1in the compositional range fromx=30 tox=64 at % with the aid of a Hereaus TMA 500 dilatometer. The crystallization behaviour of the same glassy alloys under the same non-isothermal conditions was studied with a Perkin-Elmer DSC 7 differential scanning calorimeter. The characteristic crystallization and viscous flow parameters (the onset temperature,Tx, of crystallization; the temperature,Tm, of maximum heat evolution of the first crystallization step; the enthalpy, ΔHx, of crystallization; the activation energy,Qx, of crystallization; the glass transition temperature,Tg; the viscosity values η (Tg) and ηmin; and the activation energy for viscous flowQη (T>Tg), were shown to be dependent on composition. This dependence was examined on the basis of the equilibrium phase diagram of the Ni-Zr-system, and it is shown that glassy alloys possessing eutectic compositions manifest the greatest thermal stability because of the long-range atomic diffusion needed for crystallization to occur. Glassy alloys with nearly peritectoid compositions show low thermal stability, as no long-range diffusion is needed for the formation of the stable crystallization end-products NiZr2 and NiZr. In all cases, the crystallization process is governed by viscosity flow of these glassy alloys.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.