Abstract

The breakup of low-viscosity droplets like water is a ubiquitous and rich phenomenon. Theory predicts that in the inviscid limit one observes a finite-time singularity, giving rise to a universal power law, with a prefactor that is universal for a given density and surface tension. This universality has been proposed as a powerful tool to determine the dynamic surface tension at short time scales. We combine high-resolution experiments and simulations to show that this universality is unobservable in practice: in contrast to previous studies, we show that fluid and system parameters do play a role; notably a small amount of viscosity is sufficient to alter the breakup dynamics significantly.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.