Abstract

The characterisation of viscous damping in time history analysis is discussed in this paper. Although it has been more common in the past to use a constant damping coefficient for single-degree-of-freedom time history analyses, it is contended that tangent-stiffness proportional damping is a more realistic assumption for inelastic systems. Analyses are reported showing the difference in peak displacement response of single-degree-of-freedom systems with various hysteretic characteristics analysed with 5% initial-stiffness or tangent-stiffness proportional damping. The difference is found to be signiffcant, and dependent on hysteresis rule, ductility level and period. The relationship between the level of elastic viscous damping assumed in time-history analysis, and the value adopted in Direct Displacement-Based Design is investigated. It is shown that the difference in characteristic stiffness between time-history analysis (i.e. the initial stiffness) and displacement based design (the secant stiffness to maximum response) requires a modification to the elastic viscous damping added to the hysteretic damping in Direct Displacement-Based Design.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.