Abstract
Reliable understanding of viscosity (η), thermal conductivity (λ), and interfacial tension (γ) are demanded in the refrigeration process, especially in the heat, mass and momentum transfer calculations. In this work, measurements of these thermophysical properties for (CO2 + R32) have been conducted by vibrating wire viscometry, transient hot-wire technique, and differential capillary rise approach. The experimental condition ranges from (208.4 to 344.4) K and pressures up to 7.58 MPa at x(CO2) = 0.7, 0.8 and 0.9, including those in the single-phase and near the melting curves. The standard uncertainties (k = 1) are between (0.21 and 6.80) μPa·s, (0.00012 and 0.00290) W·m–1·K–1, and (0.13 and 0.67) mN·m–1 for viscosity, thermal conductivity, and interfacial tension, respectively. The achieved results and the literature data (if applicable) were utilised to regress the extended corresponding states correlation and Parachor approach implemented in REFPROP 10.0. With the regressed models, most viscosity and thermal conductivity results can be described within 4%. The determined data and improved model provided here should contribute significantly to the design margin minimisation in the refrigeration cycle.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.