Abstract

The modification of liquid metal by electric pulse (EP) is a novel method for grain refinement. In this work, based on the reported structural heredity of EP-modified liquid aluminum, we investigated its viscosity change by using torsional oscillation viscometer. The results validate the viscosity of EP-modified liquid aluminum also decreases with increasing temperature and meets approximately exponential correlation on the whole. Moreover, it is especially important that the EP-modified liquid aluminum has the higher viscosity and possesses the bigger viscous-flow cluster in a certain temperature range, which should be associated with the increase of the order degree of its liquid structure. Differential scanning calorimetry (DSC) measurement also confirms that viewpoint. These coupling results experimentally testify the proposed mechanism of electric pulse modification (EPM) modeled merely by postulation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.