Abstract
Viscosity is an important fluid transport property, and the viscosity data mostly are obtained from experimental measurements. The fixed path interference method with a cylindrical resonator is one of the most precise ways to gain the gaseous sound speed by measuring the resonance frequency and the half-width of the resonance peak. The gas viscosity affects the sound speed, leading to the offset of the resonance frequency and the increase of half-width of the resonance peak. Viscosity can be accurately acquired through the measurement of the resonance frequency and the half-width of the resonance peak, together with modifications due to the effect of the thermal boundary layer, the fill duct on the resonator shell, the transducer and the resonator shell vibration. In this paper, the way to acquire viscosity by the cylindrical resonator was developed and was verified by measuring argon (Ar) viscosity, and we find the result agreeing well with the data given in the literature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.