Abstract
Abstract We use viscosity approximation methods to obtain strong convergence to common fixed points of monotone mappings and a countable family of nonexpansive mappings. Let C be a nonempty closed convex subset of a Hilbert space H and P C is a metric projection. We consider the iteration process {x n} of C defined by x 1 = x ∈ C is arbitrary and $$ x_{n + 1} = \alpha _n f(x_n ) + (1 - \alpha _n )S_n P_C (x_n + \lambda _n Ax_n ) $$ where f is a contraction on C, {S n} is a sequence of nonexpansive self-mappings of a closed convex subset C of H, and A is an inverse-strongly-monotone mapping of C into H. It is shown that {x n} converges strongly to a common element of the set of common fixed points of a countable family of nonexpansive mappings and the set of solutions of the variational inequality for an inverse-strongly-monotone mapping which solves some variational inequality. Finally, the ideas of our results are applied to find a common element of the set of equilibrium problems and the set of solutions of the variational inequality problem, a zero of a maximal monotone operator and a strictly pseudocontractive mapping in a real Hilbert space. The results of this paper extend and improve the results of Chen, Zhang and Fan.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.