Abstract
Flexible polyurethane foam is widely used in numerous applications such as seats and mattresses, due to its low stiffness and its ability to absorb deformation energy. The main objective of this article is to model the quasi-static mechanical behavior of three types of polyurethane foam in large deformation and to compare these three foams with three proposed models. The uniaxial compression/decompression tests at three different strain rates were performed. The test results show that the three foams present different plateau stresses, maximum stresses, and abilities to absorb energy. Moreover, polyurethane foam also presents a nonlinear hyperelastic behavior and a viscoelastic behavior in large deformation. Three viscohyperelastic models which include a hyperelastic component and a memory component are proposed to model these behaviors. Model parameters were identified using the experimental data and a proper identification method. These models were validated on these three types of foam with the aim to present comparison results. The comparison results show that Ogden’s viscoelastic modelbest agrees with the experimental results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.