Abstract

The aim of this study is to further investigate the effect of different basalt fiber (BF) factors on the viscoelastic equivalent creep behavior of fiber‐reinforced asphalt mixture (FRAM) under indirect tensile (IDT) condition. A two‐dimension mesostructural model composed of different components including fiber mortar polymer and coarse particle aggregate is constructed via the section image processing for the IDT FRAM specimen, where BF is considered as random distribution in the mortar polymer. Furthermore, the stress distribution and equivalent creep of the IDT mesostructural model in simulation software are analyzed to discuss the influence of components on the creep behavior of FRAM. Moreover, the laboratory creep test of IDT specimens under 0% and 0.3% BF contents for FRAM is carried out to validate the simulated values. Research results indicate that the simulated creep deformation of the IDT mesostructural model is in agreement with that of the experiment. Finally, creep simulations are further conducted to discuss the effect of BF (e.g., fiber content, length‐diameter ratio, and fiber modulus) and aggregate on the creep characteristic of FRAM. The increase of fiber content and length‐diameter ratio has a significant reinforcing effect on the equivalent mechanical behavior, but the change in the modulus of fiber and aggregate has slight effects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.