Abstract
Polymers have attracted enormous attention due to their characteristics of low density and high energy density for potential applications in low weight piezoelectric motors. However, the viscosity of polymers presents a challenge to match two resonance frequencies of the longitudinal and bending modes of the bimodal piezoelectric motor. In this paper, polyphenylene sulfide (PPS)-based bimodal piezoelectric motor is researched. Concerning the viscoelasticity of PPS, the electromechanical coupling analytical model is established to describe the dynamics of the PPS-based motor by using the Kelvin-Voigt viscoelastic model. Based on the proposed model, the Taguchi method is adopted to match the resonance frequencies of the longitudinal and bending vibration. A PPS-based prototype motor is fabricated with optimized parameters. The frequency response characteristics, displacement response and electromechanical coupling coefficients are computed and compared to the finite element method and experimental results to validate the effectiveness of the model. The comparisons show that the proposed model is valid. The performance test demonstrates that the PPS-based motor can yield the maximal torque of 2 mNm with the stator weight of 5.4 g. Compared with the same volume of phosphor bronze material, 75% of weight reduction can be achieved.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.